ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Ariz. governor vetoes “fast track” bill for nuclear
Gov. Katie Hobbs put the brakes on legislation that would have eliminated some of Arizona’s regulations and oversight of small modular reactors, technology that is largely under consideration by data centers and heavy industrial power users.
T. C. Chawla, B. M. Hoglund
Nuclear Science and Engineering | Volume 44 | Number 3 | June 1971 | Pages 320-344
Technical Paper | doi.org/10.13182/NSE71-A20165
Articles are hosted by Taylor and Francis Online.
The flow transients as initiated by rapid gas release are studied both experimentally and analytically. The mathematical model developed considers a multiple pin failure in a fast-reactor subassembly. In formulating the model, it is assumed that the released gas fills the subassembly cross section uniformly and that the coolant flow is incompressible. The model considers the inertial contribution of the liquid columns beyond the pin assembly, as well as the three-dimensional flow effects in the inlet and outlet plenums. In the application of the model to out-of-pile simulation loops, or in-pile test loops, points of departure in hydraulic simulation of the actual reactor conditions can be taken into account. A quantitative criterion for valid application of the model is obtained in terms of breach size, number of pins ruptured, initial gas plenum pressure and temperature, and subassembly operating conditions. The predictions of the flow transients obtained by means of the model agree well with the experimental data. An example of the application of the model to a reactor configuration is given using an FFTF fuel subassembly.