ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
New coolants, new fuels: A new generation of university reactors
Here’s an easy way to make aging U.S. power reactors look relatively youthful: Compare them (average age: 43) with the nation’s university research reactors. The 25 operating today have been licensed for an average of about 58 years.
George J. Bohm, Elmar A. Steck
Nuclear Science and Engineering | Volume 44 | Number 3 | June 1971 | Pages 301-309
Technical Paper | doi.org/10.13182/NSE71-A20163
Articles are hosted by Taylor and Francis Online.
During a postulated loss-of-coolant accident (LOCA) (complete severance of a primary coolant pipe) the upper barrel of the reactor internals in a pressurized water reactor is subjected to dynamic differential pressures. In case of a sudden hot-leg break, the initial disturbance is a compressive triangular pulse approximately uniformly distributed with the pressure rising to a peak of 250 psi in ∼ 0.010 sec and dropping to 0 in 0.020 sec. The possible response under this impulsive compressive pressure is dynamic instability (buckling) and/or large deflections of the upper core barrel. In the present paper, the dynamic response of the barrel under the actual triangular pulse is analyzed and, to obtain margins of safety, compared with the response to assumed more severe loading conditions. The response of the barrel to the pressure pulse consists initially in a uniform radial inward movement and results, therefore, in compressive hoop stresses (hoop response). Deviations of the barrel shape from the circular cross section (initial imperfections of the order of the manufacturing tolerances) result in circumferential bending moments and the excitation of higher shell modes (flexural response). For the actual triangular pulse the analysis shows that the dynamic effects are small and the occurring stresses and deflections are close to the values obtained by loading the shell statically with the pressure . For the step loads that are applied to investigate the margin of safety of the shell, the dynamic effects are no longer negligible and result in stresses above yield for p* = 350 psi and p* = 500 psi. However, for these loading cases, the maximum deflections remain on the order of magnitude of the initial imperfections and the barrel is therefore considered stable.