ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
DOE extends Centrus’s HALEU production contract by one year
Centrus Energy has announced that it has secured a contract extension from the Department of Energy to continue—for one year—its ongoing high-assay low-enriched uranium (HALEU) production at the American Centrifuge Plant in Piketon, Ohio, at an annual rate of 900 kilograms of HALEU UF6. According to Centrus, the extension is valued at about $110 million through June 30, 2026.
George J. Bohm, Elmar A. Steck
Nuclear Science and Engineering | Volume 44 | Number 3 | June 1971 | Pages 301-309
Technical Paper | doi.org/10.13182/NSE71-A20163
Articles are hosted by Taylor and Francis Online.
During a postulated loss-of-coolant accident (LOCA) (complete severance of a primary coolant pipe) the upper barrel of the reactor internals in a pressurized water reactor is subjected to dynamic differential pressures. In case of a sudden hot-leg break, the initial disturbance is a compressive triangular pulse approximately uniformly distributed with the pressure rising to a peak of 250 psi in ∼ 0.010 sec and dropping to 0 in 0.020 sec. The possible response under this impulsive compressive pressure is dynamic instability (buckling) and/or large deflections of the upper core barrel. In the present paper, the dynamic response of the barrel under the actual triangular pulse is analyzed and, to obtain margins of safety, compared with the response to assumed more severe loading conditions. The response of the barrel to the pressure pulse consists initially in a uniform radial inward movement and results, therefore, in compressive hoop stresses (hoop response). Deviations of the barrel shape from the circular cross section (initial imperfections of the order of the manufacturing tolerances) result in circumferential bending moments and the excitation of higher shell modes (flexural response). For the actual triangular pulse the analysis shows that the dynamic effects are small and the occurring stresses and deflections are close to the values obtained by loading the shell statically with the pressure . For the step loads that are applied to investigate the margin of safety of the shell, the dynamic effects are no longer negligible and result in stresses above yield for p* = 350 psi and p* = 500 psi. However, for these loading cases, the maximum deflections remain on the order of magnitude of the initial imperfections and the barrel is therefore considered stable.