ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
D. D. B. van Bragt, Rizwan-uddin, T. H. J. J. van der Hagen
Nuclear Science and Engineering | Volume 131 | Number 1 | January 1999 | Pages 23-44
Technical Paper | doi.org/10.13182/NSE99-A2016
Articles are hosted by Taylor and Francis Online.
A dynamic model of natural circulation boiling water reactors (BWRs) is analyzed using a bifurcation code and numerical simulations. The two fundamental bifurcation types relevant to BWRs, the supercritical and the subcritical Hopf bifurcations, are first studied in natural circulation systems without nuclear feedback. The effect of nodalization approximation in the riser on stability and bifurcation characteristics of the system is determined. The strong effect of the nuclear-thermohydraulic interaction on the nonlinear characteristics of a natural circulation BWR is then explored in a parametric study. Supercritical bifurcations become dominant in the (high-power) Type-II region for small values of the subcooling number and a strong nuclear-thermohydraulic coupling. A cascade of period-doubling pitchfork bifurcations (deep in the unstable region) is also predicted by the model under these conditions. Subcritical bifurcations in the Type-II instability region were found for larger values of the subcooling number. Both Hopf-bifurcation modes were also encountered in the Type-I instability region (low power or high power/high subcooling). Finally, the nonlinear reactor model was validated successfully compared with nonlinear power oscillations measured in a natural circulation BWR.