ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
DOE extends Centrus’s HALEU production contract by one year
Centrus Energy has announced that it has secured a contract extension from the Department of Energy to continue—for one year—its ongoing high-assay low-enriched uranium (HALEU) production at the American Centrifuge Plant in Piketon, Ohio, at an annual rate of 900 kilograms of HALEU UF6. According to Centrus, the extension is valued at about $110 million through June 30, 2026.
A. Hemmendinger, C. E. Ragan, Jon M. Wallace
Nuclear Science and Engineering | Volume 70 | Number 3 | June 1979 | Pages 274-280
Technical Paper | doi.org/10.13182/NSE79-A20148
Articles are hosted by Taylor and Francis Online.
The specific production of tritium in a 600-mm-diam sphere of 6LiD irradiated by a central source of 14-MeV neutrons has been determined by measuring the tritium radioactivity in samples of 6LiH and 7LiH embedded in the sphere. Results are reported for several samples of each isotope at each of five different radii in the assembly. The entire process of decomposing the LiH samples, transferring the evolved gas into counters, and determining the decay rate was standardized by processing LiH samples irradiated by thermal neutrons, for which the 6Li(n,α) cross section is well known. These experiments provide benchmark measurements for checking calculations of neutron transport and tritium production in 6LiD. Tritium production in each ampule, as calculated using a three-dimensional Monte Carlo code, is in reasonable agreement with the experiment. For 7Li, discrepancies between calculation and experiment seem to be due to errors in the tritium production cross sections.