ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
M. L. Corradini
Nuclear Science and Engineering | Volume 78 | Number 2 | June 1981 | Pages 154-170
Technical Paper | doi.org/10.13182/NSE81-A20101
Articles are hosted by Taylor and Francis Online.
During the past few years, over 300 small-scale experiments have been performed by Nelson at Sandia National Laboratories, investigating the triggering of steam explosions over a variety of initial conditions. The primary purpose of this paper is to present the results of phenomenological modeling and analyses that may explain the experimental observations. These three major conclusions are suggested by the analysis. Noncondensible gases generated by fuel oxidation appear to be the cause of steam explosion suppression for metallic fuel melts, causing a more stable film between the hot and cold liquids. Suppression of the explosion by high ambient pressure or high water temperature is caused by the initial coolant vapor film becoming more stable inhibiting film collapse. All the above effects appear to be trigger related. Therefore, an explosion can be generated if the trigger magnitude is sufficiently increased.