ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
J. K. Dickens, T. A. Love, J. W. McConnell, R. W. Peelle
Nuclear Science and Engineering | Volume 78 | Number 2 | June 1981 | Pages 126-146
Technical Paper | doi.org/10.13182/NSE81-A20099
Articles are hosted by Taylor and Francis Online.
Absolute fission-product decay energy-release rates have been measured for thermal-neutron fission of 239Pu and 241Pu. Spectral data were obtained using scintillation spectrometers for beta and gamma rays separately and were processed to the form of total yield and total energy-release integrals per fission for each set of time-interval parameters. The irradiations were for 1, 5, and 50 (241Pu) or 100 (239Pu) s, and measurements were made covering times following irradiation from 1.7 to 13 950 s. The separate beta- and gamma-ray energy-release data were summed to obtain the total (β + γ) energy-release rates for the cases studied. The data are processed to provide two standard representations of decay energy release, the one following a fission pulse and the other following an infinite fission period. Complete representations of estimated uncertainties are given in the form of variance-covariance matrices for the first time. For the pulse representation of the data, diagonal components correspond to uncertainties in the range of 3 to 6%, with correlation coefficients in the range from 0.1 to 0.5. Comparisons with other experimental data show that the present results are generally smaller than the other data, in some cases by more than the estimated uncertainties. The present results are also smaller than those included in the current American National Standard Decay Heat Power in Light Water Reactors, ANSI/IANS-5.1-1979, for 239Pu by 2 to 4% for the time interval 2 to 14 000 s. For 241Pu decay heat, the present data are larger than previously obtained experimental 235U data but smaller than the adopted 235U standard in ANSI/ANS-5.1-1979. The importance of these comparisons for analyses using the new Standard is presented.