ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
M. Salvatores, I. Slessarev, A. Tchistiakov
Nuclear Science and Engineering | Volume 130 | Number 3 | November 1998 | Pages 309-319
Technical Paper | doi.org/10.13182/NSE98-A2008
Articles are hosted by Taylor and Francis Online.
A general physical approach and simplified algorithm have been developed that allow utilities to choose their strategy for treatment of the most dangerous long-lived fission products (either to incinerate under neutron flux or to store in underground repository) as well as to assess the overall neutron consumption needed for their incineration in a fast neutron spectrum. It has been demonstrated that if nuclear power can solve transuranic (TRU) waste transmutation problems and be able to incinerate the most toxic long-lived nuclides, such as Tc, I, and Cs (it demands ~0.15 n/fission for all these nuclides without isotopic separation), then the long-term radiotoxicity in the underground repository will not exceed the initial radiotoxicity of uranium fuel. This is one of the most important criteria of the radiologically clean nuclear power concept. Hence, apart from TRU transmutation problems, the emphasis is now on long-lived fission product incineration.