ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
G. D. Joanou, J. R. Triplett, R. M. Wagner
Nuclear Science and Engineering | Volume 18 | Number 3 | March 1964 | Pages 363-369
Technical Paper | doi.org/10.13182/NSE64-A20056
Articles are hosted by Taylor and Francis Online.
An iterative approach to the reactor burnup problem is developed on the basis of analytical solutions for the variable-coefficient burnup equations. The time dependence of the depletion matrices, A(t), is approximated by a polynomial representation. The number of basic time points for which spatial-diffusion calculations during burnup are required is determined only by the order of approximation necessary to give a reasonably good fit for the time dependence of A(t). Usually a low-order approximation is sufficient, so the number of diffusion calculations is reduced to a minimum. The method is applicable both to survey-type calculations and to detailed reactor-burnup studies. A comparison of some results obtained with the method described in this paper and with standard calculational methods is given for a typical example. The results show the rapid convergence and accuracy of the proposed procedure.