ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
P. E. Reagan, F. L. Carlsen, R. M. Carroll
Nuclear Science and Engineering | Volume 18 | Number 3 | March 1964 | Pages 301-318
Technical Paper | doi.org/10.13182/NSE64-A20051
Articles are hosted by Taylor and Francis Online.
Fission-gas release from pyrolytic-carbon-coated uranium carbide particles was studied as part of a fuel-development program for gas-cooled reactors. The particles were contained in a test capsule between concentric cylinders of porous graphite and were heated by fission heat. A small flow of helium was used to sweep the fission gas from the test capsule. Uranium carbide particles coated with three types of pyrolytic carbon (laminar, columnar, and duplex), as well as uncoated uranium carbide particles, were irradiated at temperatures up to 1800 F. The steady-state fission-gas release rates were measured as a function of temperature and burnup. All three coating types greatly reduced the fission-gas release rate from uranium carbide particles; the duplex coating was much better than the laminar or the columnar coatings. Post-irradiation examination revealed less than 0.1% broken coatings for the duplex coating. A radiation-induced reaction zone was observed at the fuel/coating interface for all three types. A correlation was made between the number of broken coatings and fission-gas release rate.