ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
M. Subasi, M. N. Erduran, M. Bostan, I. A. Reyhancan, E. Gültekin, G. Tarcan, Y. Ozbir, A. Durusoy
Nuclear Science and Engineering | Volume 130 | Number 2 | October 1998 | Pages 254-260
Technical Paper | doi.org/10.13182/NSE98-A2004
Articles are hosted by Taylor and Francis Online.
Cross sections were measured for the 44Ca(n,)41Ar, 45Sc(n,)42K, and 51V(n,)48Sc reactions at neutron energies from 13.6 to 14.9 MeV. The neutrons were produced via the 3H(d,n)4He reaction on a neutron generator using a solid TiT target. The activation technique was used, and induced gamma activities were measured by a high-resolution gamma-ray spectrometer. Corrections were made for the effects of gamma-ray attenuation, random coincidence (pulse pileup), coincidence summing, dead time, neutron flux fluctuations, and low-energy neutrons. Statistical model calculations taking into account precompound effects were performed for all the reactions investigated, and the experimental results were reproduced well except for the (n,) reaction on the 45Sc target. Also, comparisons with the recent experimental data showed good agreement.