ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
What’s the most difficult question you’ve been asked as a maintenance instructor?
Blye Widmar
"Where are the prints?!"
This was the final question in an onslaught of verbal feedback, comments, and critiques I received from my students back in 2019. I had two years of instructor experience and was teaching a class that had been meticulously rehearsed in preparation for an accreditation visit. I knew the training material well and transferred that knowledge effectively enough for all the students to pass the class. As we wrapped up, I asked the students how they felt about my first big system-level class, and they did not hold back.
“Why was the exam from memory when we don’t work from memory in the plant?” “Why didn’t we refer to the vendor documents?” “Why didn’t we practice more on the mock-up?” And so on.
M. Subasi, M. N. Erduran, M. Bostan, I. A. Reyhancan, E. Gültekin, G. Tarcan, Y. Ozbir, A. Durusoy
Nuclear Science and Engineering | Volume 130 | Number 2 | October 1998 | Pages 254-260
Technical Paper | doi.org/10.13182/NSE98-A2004
Articles are hosted by Taylor and Francis Online.
Cross sections were measured for the 44Ca(n,)41Ar, 45Sc(n,)42K, and 51V(n,)48Sc reactions at neutron energies from 13.6 to 14.9 MeV. The neutrons were produced via the 3H(d,n)4He reaction on a neutron generator using a solid TiT target. The activation technique was used, and induced gamma activities were measured by a high-resolution gamma-ray spectrometer. Corrections were made for the effects of gamma-ray attenuation, random coincidence (pulse pileup), coincidence summing, dead time, neutron flux fluctuations, and low-energy neutrons. Statistical model calculations taking into account precompound effects were performed for all the reactions investigated, and the experimental results were reproduced well except for the (n,) reaction on the 45Sc target. Also, comparisons with the recent experimental data showed good agreement.