ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
3D-printed tool at SRS makes quicker work of tank waste sampling
A 3D-printed tool has been developed at the Department of Energy’s Savannah River Site in South Carolina that can eliminate months from the job of radioactive tank waste sampling.
William R. Mills, Jr., L. Scott Allen, Richard L. Caldwell, George N. Salaita, Tom J. Gray
Nuclear Science and Engineering | Volume 21 | Number 3 | March 1965 | Pages 346-356
Technical Paper | doi.org/10.13182/NSE65-A20038
Articles are hosted by Taylor and Francis Online.
Pulsed-neutron experiments have been performed in a borehole model to determine the effects of tool position, borehole fluid, and source-detector spacing on pulsed-neutron/thermal-neutron logging. Neutron-time distributions were measured with various combinations of the above parameters in a sand model of 32.5% porosity filled with fresh water or salt water with 230 g/liter NaCl. Neutron lifetimes determined from the distributions indicate the degree of validity of the assertion that undesirable borehole effects are largely eliminated by this logging method. A numerical computer code (CUNLAP) has been developed to solve the time-dependent, three-group diffusion equations which apply to borehole geometry. Results of test calculations are presented and compared to the experiments in a semiquantitative way. The numerical results are also compared to those of an analytical, fundamental-mode calculation. It is shown that the latter approach is inappropriate for the type of measurement and size of system used in experiments of this nature.