ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
G. I. Coulbourn, T. G. Williamson
Nuclear Science and Engineering | Volume 35 | Number 3 | March 1969 | Pages 376-383
Technical Paper | doi.org/10.13182/NSE69-A20017
Articles are hosted by Taylor and Francis Online.
The fast-neutron spectrum and dose rate were measured at various distances from a point fission-neutron source in water and in two aluminum and water mixtures using seven threshold reaction detectors and p-i-n silicon diode dosimeters. The experimental results were compared with calculations made using the ANISN computer code. The threshold reactions used were the 115In(n, n′), 32S(n, þ), 64Zn(n, þ), 27Al(n, þ), 56Fe(n, þ), 24Mg(n, þ), and 27Al(n, α). Using experimentally determined counting efficiencies, absolute saturation activities of the threshold reaction products were determined. A method of neutron-spectrum unfolding was devised which represented the fast-neutron spectrum by a group of successive exponentials, calculated from the saturation activities. The reported spectra generally agreed well with the results predicted by the ANISN code. The fast-neutron dose rate was measured directly using p-i-n junction dosimeters and indirectly by applying flux-to-dose conversion factors to the measured fast-neutron flux. Good agreement was obtained between these measurements and calculations