ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
K. Shure, J. A. O'Brien, D. M. Rothberg
Nuclear Science and Engineering | Volume 35 | Number 3 | March 1969 | Pages 371-375
Technical Paper | doi.org/10.13182/NSE69-A20016
Articles are hosted by Taylor and Francis Online.
Effective removal cross sections for iron and lead that can be applied to fast-neutron dose rate calculations have been determined from calculated spatial-spectral neutron distributions as a function of succeeding polyethylene thickness. These cross sections increase with polyethylene thickness, and for large polyethylene thicknesses, they are in agreement with those derived from experiment. From the spatial-spectral neutron distributions, relative contributions of various neutron energy ranges to the neutron dose rate have been calculated as a function of succeeding polyethylene thickness. For polyethylene thicknesses > 30 cm, fast (E > 302 keV), epithermal (302 keV > E > 0.625 eV), and thermal (E < 0.625 eV) neutrons contribute 83, 6, and 11%, respectively, to the neutron dose rate.