ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
DOE-EM awards $74.8M Oak Ridge support services contract
The Department of Energy’s Office of Environmental Management has awarded a five-year contract worth up to $74.8 million to Independent Strategic Management Solutions for professional support services at the Oak Ridge Office of Environmental Management site in Oak Ridge, Tenn.
C. L. Brown, L. E. Hansen, H. Toffer
Nuclear Science and Engineering | Volume 35 | Number 3 | March 1969 | Pages 358-363
Technical Paper | doi.org/10.13182/NSE69-A20014
Articles are hosted by Taylor and Francis Online.
Exponential and critical approach experiments have been performed to determine material buddings and extrapolation distances for several hexagonal lattice arrays of 2.1 wt% 235U enriched uranium tubes in light water. Tubes of two sizes were measured—2.33-in. o.d., 1.77-in. i.d.; and 1.38-in. o.d., 0.63-in. i.d. The arrays included clean lattices of uranium tubes; uranium tubes containing lithium aluminate target rods; uranium tubes with adjacent neutron absorbing columns; and two mixed lattices of 0.95 and 2.1 wt% enriched tubes—one with the 0.95 and 2.1 wt% tubes evenly distributed in the lattice, and the other with the 0.95 and 2.1 wt% tubes arranged in alternate rings. These experiments supplement data obtained in 1965 for 1.002, 1.25, and 1.95 wt% enriched uranium tubes. Critical parameters for these lattices, calculated with the HAMMER code, agree reasonably well with the measured results.