ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
R. L. Bramblett, J. B. Czirr
Nuclear Science and Engineering | Volume 35 | Number 3 | March 1969 | Pages 350-357
Technical Paper | doi.org/10.13182/NSE69-A20013
Articles are hosted by Taylor and Francis Online.
A measurement has been made of the effects of flux depression upon the neutron-induced fission rate in 235U using self-detection techniques. A thin 235U fission detector was irradiated with neutrons from the LRL electron linear accelerator. The change in the fission counting rate was measured when absorber foils of 235U were inserted into the neutron beam. The detector consisted of a parallel-plate fission chamber containing eight 235U foils of thickness ½ mg/cm2 each. The incident neutron energies were measured by time-of-flight within the energy range from 0.46 eV to 2.1 keV and with a timing resolution of 27 nsec/m. The effect of this relatively poor resolution of the energy-averaged fission rate is eliminated by the self-detection technique. The enriched uranium absorber foils varied in thickness from 0.14 to 19 g/cm2, with a 235U content of 93%. In addition, 235U fission and total cross sections were measured with comparable resolution.