ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
DOE-EM awards $74.8M Oak Ridge support services contract
The Department of Energy’s Office of Environmental Management has awarded a five-year contract worth up to $74.8 million to Independent Strategic Management Solutions for professional support services at the Oak Ridge Office of Environmental Management site in Oak Ridge, Tenn.
J. H. Warner, Jr., R. C. Erdmann
Nuclear Science and Engineering | Volume 35 | Number 3 | March 1969 | Pages 332-341
Technical Paper | doi.org/10.13182/NSE69-A20011
Articles are hosted by Taylor and Francis Online.
An energy-dependent transport theory solution for the infinite medium neutron-wave propagation problem is obtained by applying a Laguerre polynomial expansion to represent the flux energy dependence. Integral transform methods are utilized to determine solutions appropriate for a general isotropic scattering kernel and general cross sections. Detailed calculations are performed for a two-term polynomial expansion and an energy-dependent cross-section model. Although the polynomial expansion approximation appears to be quite satisfactory for low modulation frequencies, serious inadequacies exist for higher frequencies where continuum effects are important. A critical frequency is not predicted, and the two-dimensional continuum of eigenvalues is approximated by a series of cuts, the number of which depends on the number of terms in the expansion.