ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
New coolants, new fuels: A new generation of university reactors
Here’s an easy way to make aging U.S. power reactors look relatively youthful: Compare them (average age: 43) with the nation’s university research reactors. The 25 operating today have been licensed for an average of about 58 years.
A. J. Buslik
Nuclear Science and Engineering | Volume 35 | Number 3 | March 1969 | Pages 303-318
Technical Paper | doi.org/10.13182/NSE69-A20009
Articles are hosted by Taylor and Francis Online.
A self-adjoint positive-definite variational principle is presented which leads to upper and lower bounds for < S*, ϕ >, where < S*, ϕ > is an integral over position and angular direction of the product of the one-velocity neutron transport flux, ϕ and an arbitrary adjoint source, S*. The Euler equation of the functional is a new form of the one-velocity Boltzmann neutron transport equation in which the dependent variable is one-half the sum of ϕ and ϕ*, where ϕ* is the adjoint flux. When a trial function consisting of an expansion in spherical harmonics is used, one obtains as a lower bound for < S*, ϕ > the quantity < US1, ϕ(P−N′; S1) > − < US2, ϕ(P−N″; S2) >, where S1(r, Ω) = [S(r, Ω) + S*(r, −Ω)]/2, S2(r, Ω) = [S(r, Ω) − S*(r, −Ω)]/2, ϕ(P-N′; S1) is an odd P−N approximation to a problem with the same cross sections as the original problem, but with source S1; ϕ(P−N″; S2) is an even P−N approximation to a problem with source S2, and U is the operator that takes a function f(r, Ω) into f(r, −Ω).