ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
A. J. Buslik
Nuclear Science and Engineering | Volume 35 | Number 3 | March 1969 | Pages 303-318
Technical Paper | doi.org/10.13182/NSE69-A20009
Articles are hosted by Taylor and Francis Online.
A self-adjoint positive-definite variational principle is presented which leads to upper and lower bounds for < S*, ϕ >, where < S*, ϕ > is an integral over position and angular direction of the product of the one-velocity neutron transport flux, ϕ and an arbitrary adjoint source, S*. The Euler equation of the functional is a new form of the one-velocity Boltzmann neutron transport equation in which the dependent variable is one-half the sum of ϕ and ϕ*, where ϕ* is the adjoint flux. When a trial function consisting of an expansion in spherical harmonics is used, one obtains as a lower bound for < S*, ϕ > the quantity < US1, ϕ(P−N′; S1) > − < US2, ϕ(P−N″; S2) >, where S1(r, Ω) = [S(r, Ω) + S*(r, −Ω)]/2, S2(r, Ω) = [S(r, Ω) − S*(r, −Ω)]/2, ϕ(P-N′; S1) is an odd P−N approximation to a problem with the same cross sections as the original problem, but with source S1; ϕ(P−N″; S2) is an even P−N approximation to a problem with source S2, and U is the operator that takes a function f(r, Ω) into f(r, −Ω).