ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
WIPP’s SSCVS: A breath of fresh air
This spring, the Department of Energy’s Office of Environmental Management announced that it had achieved a major milestone by completing commissioning of the Safety Significant Confinement Ventilation System (SSCVS) facility—a new, state-of-the-art, large-scale ventilation system at the Waste Isolation Pilot Plant, the DOE’s geologic repository for defense-related transuranic (TRU) waste in New Mexico.
A. J. Buslik
Nuclear Science and Engineering | Volume 35 | Number 3 | March 1969 | Pages 303-318
Technical Paper | doi.org/10.13182/NSE69-A20009
Articles are hosted by Taylor and Francis Online.
A self-adjoint positive-definite variational principle is presented which leads to upper and lower bounds for < S*, ϕ >, where < S*, ϕ > is an integral over position and angular direction of the product of the one-velocity neutron transport flux, ϕ and an arbitrary adjoint source, S*. The Euler equation of the functional is a new form of the one-velocity Boltzmann neutron transport equation in which the dependent variable is one-half the sum of ϕ and ϕ*, where ϕ* is the adjoint flux. When a trial function consisting of an expansion in spherical harmonics is used, one obtains as a lower bound for < S*, ϕ > the quantity < US1, ϕ(P−N′; S1) > − < US2, ϕ(P−N″; S2) >, where S1(r, Ω) = [S(r, Ω) + S*(r, −Ω)]/2, S2(r, Ω) = [S(r, Ω) − S*(r, −Ω)]/2, ϕ(P-N′; S1) is an odd P−N approximation to a problem with the same cross sections as the original problem, but with source S1; ϕ(P−N″; S2) is an even P−N approximation to a problem with source S2, and U is the operator that takes a function f(r, Ω) into f(r, −Ω).