ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
P. Goldschmidt, J. Quenon
Nuclear Science and Engineering | Volume 39 | Number 3 | March 1970 | Pages 311-319
Technical Paper | doi.org/10.13182/NSE70-A19992
Articles are hosted by Taylor and Francis Online.
A method of optimizing the fissile fuel distribution to obtain minimum critical mass for a fast breeder reactor of fixed power is presented. Constraints on the power density and on the fuel enrichment are considered. The reactor is described by one-group diffusion theory. The optimal trajectory in the phase space (flux-current) is found a priori using the Maximum Principle of Pontryagin. It is shown that in general, the optimum reactor has three distinct regions: a central constant-power-density region, a region of maximum fuel enrichment and an outer region of minimum enrichment corresponding to the blanket. The existence of this last region and its dimension depend on the outer boundary condition which can simulate the presence of an external reflector. The expressions obtained for the optimized dimensions of each region can be solved analytically and numerical results are given.