ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
WIPP’s SSCVS: A breath of fresh air
This spring, the Department of Energy’s Office of Environmental Management announced that it had achieved a major milestone by completing commissioning of the Safety Significant Confinement Ventilation System (SSCVS) facility—a new, state-of-the-art, large-scale ventilation system at the Waste Isolation Pilot Plant, the DOE’s geologic repository for defense-related transuranic (TRU) waste in New Mexico.
M. W. Golay, K. B. Cady
Nuclear Science and Engineering | Volume 43 | Number 3 | March 1971 | Pages 303-314
Technical Paper | doi.org/10.13182/NSE71-A19976
Articles are hosted by Taylor and Francis Online.
Axial neutron-pulse propagation experiments were conducted in cylindrical cores of the Cornell University Zero Power Reactor (ZPR). Energy-dependent neutron diffusion theory is found to provide a good prediction of the kinetic behavior of the assemblies. At short times the reactor response is that of an infinitely long reactor, and at long times exponential decay of Helmholtz spatial modes is observed. A space-independent pulse propagation velocity is not observed in most of the assemblies. Such a result is obtained only in infinitely long assemblies, and in most finite-length cores end-effect contamination cannot be neglected. In the Laplace transform domain the neutron density wave dispersion relations are obtained when the transform variable ξ is imaginary in the cores which would be prompt-subcritical if they were infinitely long. When ξ is real, the inverse attenuation length which would be measured in a static exponential experiment in an assembly uniformly poisoned by an absorber of strength ξ/υ is obtained. The agreement between the measured parameters and the predictions of diffusion theory improves as the neutron multiplication of the assembly decreases due to decreased end-effect contamination of the infinitely long assembly response. The effective multiplication of an assembly is seen to decrease due to spectral hardening as