ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
3D-printed tool at SRS makes quicker work of tank waste sampling
A 3D-printed tool has been developed at the Department of Energy’s Savannah River Site in South Carolina that can eliminate months from the job of radioactive tank waste sampling.
R. L. French, L. G. Mooney
Nuclear Science and Engineering | Volume 43 | Number 3 | March 1971 | Pages 273-280
Technical Paper | doi.org/10.13182/NSE71-A19973
Articles are hosted by Taylor and Francis Online.
The effect of the air-ground interface on the scattered fast-neutron dose near the ground was measured at a distance of 1000 ft from a 14-MeV neutron source. The source was the HENRE accelerator operated at a height of 112 ft on the BREN tower at the Nevada Test Site. A horizontal slab of polyethylene 1 ft thick and 5 ft square, with Hurst-type fast-neutron dosimeters mounted on its upper and lower surfaces, separated the neutrons arriving through the upper 2π solid angle from those from the lower 2π. A third detector, mounted on a boom, measured the free-field. The entire assembly was suspended by a hoist system to make measurements at 0.75 to 70 ft above the ground. The scattered dose at the top detector was essentially constant; that at the bottom detector increased by a factor of approximately 2 between 0.75 and 70 ft, and the free-field dose increased by < 25% over the same height range. The experiment provided confirmation, both qualitative and quantitative, of the “first-last collision model” of the air-ground interface effect.