ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
R. G. Alsmiller, Jr., J. Barish
Nuclear Science and Engineering | Volume 69 | Number 3 | March 1979 | Pages 378-388
Technical Paper | doi.org/10.13182/NSE79-A19956
Articles are hosted by Taylor and Francis Online.
Multigroup cross sections (47 n groups, 21 gamma-ray groups) in ANISN format for neutron energies from thermal to 60 MeV and for the elements hydrogen, 10B, 11B, carbon, oxygen, silicon, calcium, chromium, iron, and nickel are described. A P5 Legendre expansion is used at energies , and a P3 Legendre expansion is used at energies . Below 14.9 MeV, the cross sections are from the Radiation Shielding Information Center's fusion energy cross-section library. Above this energy, differential elastic scattering cross-section data from optical model calculations are used, and differential nonelastic scattering data from the intranuclear-cascade-evaporation model are used. Calculated results of the dose equivalent versus depth in the shield from a point isotropic source at the center of a 366-cm-thick spherical shell heavy concrete (density = 3.6 g cm−3) shield are presented. The energy distribution of the source neutrons is approximately that from a Li(D, n) neutron radiation damage facility.