ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Perpetual Atomics, QSA Global produce Am fuel for nuclear space power
U.K.-based Perpetual Atomics and U.S.-based QSA Global claim to have achieved a major step forward in processing americium dioxide to fuel radioisotope power systems used in space missions. Using an industrially scalable process, the companies said they have turned americium into stable, large-scale ceramic pellets that can be directly integrated into sealed sources for radioisotope power systems, including radioisotope heater units (RHUs) and radioisotope thermoelectric generators (RTGs).
R. G. Alsmiller, Jr., J. Barish
Nuclear Science and Engineering | Volume 69 | Number 3 | March 1979 | Pages 378-388
Technical Paper | doi.org/10.13182/NSE79-A19956
Articles are hosted by Taylor and Francis Online.
Multigroup cross sections (47 n groups, 21 gamma-ray groups) in ANISN format for neutron energies from thermal to 60 MeV and for the elements hydrogen, 10B, 11B, carbon, oxygen, silicon, calcium, chromium, iron, and nickel are described. A P5 Legendre expansion is used at energies , and a P3 Legendre expansion is used at energies . Below 14.9 MeV, the cross sections are from the Radiation Shielding Information Center's fusion energy cross-section library. Above this energy, differential elastic scattering cross-section data from optical model calculations are used, and differential nonelastic scattering data from the intranuclear-cascade-evaporation model are used. Calculated results of the dose equivalent versus depth in the shield from a point isotropic source at the center of a 366-cm-thick spherical shell heavy concrete (density = 3.6 g cm−3) shield are presented. The energy distribution of the source neutrons is approximately that from a Li(D, n) neutron radiation damage facility.