ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
T. Tambouratzis, M. Antonopoulos-Domis, M. Marseguerra, E. Padovani
Nuclear Science and Engineering | Volume 130 | Number 1 | September 1998 | Pages 113-127
Technical Paper | doi.org/10.13182/NSE98-A1994
Articles are hosted by Taylor and Francis Online.
The use of artificial neural networks (ANNs) for transit time estimation is investigated. ANNs are proposed as an alternative to widely employed traditional techniques such as cross correlation and the cross spectrum, which are sensitive to the presence of noise and require a large volume of data for their calculation. The ANN employed is based on interactive activation and competition and has been found able to correctly estimate the current transit time from short records of signals generated by simulation, quickly follow changes in transit time, and detect when the transit time falls outside a predefined expected range. By appending a backpropagation ANN, the on-line estimation of decimated transit times is also allowed.