ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
Han Gyu Joo, Guobing Jiang, Thomas J. Downar
Nuclear Science and Engineering | Volume 130 | Number 1 | September 1998 | Pages 47-59
Technical Paper | doi.org/10.13182/NSE98-A1988
Articles are hosted by Taylor and Francis Online.
The nonlinear analytic nodal method, which is formulated by combining the nonlinear iteration technique and the analytic nodal method (ANM), requires analytic solutions of the two-node problems. When the method is applied to problems that contain near-critical nodes in which there is essentially no net leakage, the two-node ANM solution for such nodes results in highly ill-conditioned matrices and potential numerical instabilities, especially in single precision arithmetic. Two stabilization techniques are introduced to resolve the instability problem by employing alternate basis functions for near-critical nodes. The first uses the exact ANM solution for a critical node, and the second employs the nodal expansion method. Both techniques are shown to perform well; however, the solution accuracy can be mildly sensitive to the criterion used to invoke the stabilized coupling kernel.