ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Marvin L. Adams, Todd A. Wareing, Wallace F. Walters
Nuclear Science and Engineering | Volume 130 | Number 1 | September 1998 | Pages 18-46
Technical Paper | doi.org/10.13182/NSE98-A1987
Articles are hosted by Taylor and Francis Online.
The performance of characteristic methods (CMs) on problems that contain optically thick diffusive regions is analyzed and tested. The asymptotic analysis holds for moment-based characteristics methods that are algebraically linear; for one-, two-, and three-dimensional Cartesian coordinate systems; and for arbitrary spatial grids composed of polygons (two dimensions) or polyhedra (three dimensions). The analysis produces a theory that predicts and explains how CMs behave when applied to thick diffusive problems. The theory predicts that as spatial cells become optically thick and highly scattering, CMs behave almost exactly like discontinuous finite element methods (DFEMs). This means that there are two classes of CMs: those that fail dramatically on thick diffusive problems and those whose solutions satisfy discretizations of the correct diffusion equation. Most CMs in the latter set behave poorly in general, sometimes producing oscillatory and negative solutions in thick diffusive regions. However, the analysis suggests that certain reduced-order CMs, which use less information on cell surfaces than is readily available, will behave more robustly in thick diffusive regions. The predictions regarding standard CMs are tested by using the linear and bilinear characteristics methods on several test problems with rectangular grids in x-y geometry. The predictions regarding reduced-order CMs are tested by solving x-y test problems on triangular grids using a CM that employs linear functions for cell-interior sources but constants for cell-surface fluxes. In every case the numerical results agree precisely with the predictions of the theory.