ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Leading the charge: INL’s role in advancing HALEU production
Idaho National Laboratory is playing a key role in helping the U.S. Department of Energy meet near-term needs by recovering HALEU from federal inventories, providing critical support to help lay the foundation for a future commercial HALEU supply chain. INL also supports coordination of broader DOE efforts, from material recovery at the Savannah River Site in South Carolina to commercial enrichment initiatives.
Marvin L. Adams, Todd A. Wareing, Wallace F. Walters
Nuclear Science and Engineering | Volume 130 | Number 1 | September 1998 | Pages 18-46
Technical Paper | doi.org/10.13182/NSE98-A1987
Articles are hosted by Taylor and Francis Online.
The performance of characteristic methods (CMs) on problems that contain optically thick diffusive regions is analyzed and tested. The asymptotic analysis holds for moment-based characteristics methods that are algebraically linear; for one-, two-, and three-dimensional Cartesian coordinate systems; and for arbitrary spatial grids composed of polygons (two dimensions) or polyhedra (three dimensions). The analysis produces a theory that predicts and explains how CMs behave when applied to thick diffusive problems. The theory predicts that as spatial cells become optically thick and highly scattering, CMs behave almost exactly like discontinuous finite element methods (DFEMs). This means that there are two classes of CMs: those that fail dramatically on thick diffusive problems and those whose solutions satisfy discretizations of the correct diffusion equation. Most CMs in the latter set behave poorly in general, sometimes producing oscillatory and negative solutions in thick diffusive regions. However, the analysis suggests that certain reduced-order CMs, which use less information on cell surfaces than is readily available, will behave more robustly in thick diffusive regions. The predictions regarding standard CMs are tested by using the linear and bilinear characteristics methods on several test problems with rectangular grids in x-y geometry. The predictions regarding reduced-order CMs are tested by solving x-y test problems on triangular grids using a CM that employs linear functions for cell-interior sources but constants for cell-surface fluxes. In every case the numerical results agree precisely with the predictions of the theory.