ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Uranium prices reach highest level since February 2024
The end-of-January spot price for uranium was $94.28 per pound, according to uranium fuel provider Cameco. That was the highest spot price posted by the company since the $95.00 per pound it listed at the end of February 2024. Spot prices during 2025 ranged from a low of $64.23 per pound at the end of March to a high of $82.63 per pound at the end of September.
Marvin L. Adams, Todd A. Wareing, Wallace F. Walters
Nuclear Science and Engineering | Volume 130 | Number 1 | September 1998 | Pages 18-46
Technical Paper | doi.org/10.13182/NSE98-A1987
Articles are hosted by Taylor and Francis Online.
The performance of characteristic methods (CMs) on problems that contain optically thick diffusive regions is analyzed and tested. The asymptotic analysis holds for moment-based characteristics methods that are algebraically linear; for one-, two-, and three-dimensional Cartesian coordinate systems; and for arbitrary spatial grids composed of polygons (two dimensions) or polyhedra (three dimensions). The analysis produces a theory that predicts and explains how CMs behave when applied to thick diffusive problems. The theory predicts that as spatial cells become optically thick and highly scattering, CMs behave almost exactly like discontinuous finite element methods (DFEMs). This means that there are two classes of CMs: those that fail dramatically on thick diffusive problems and those whose solutions satisfy discretizations of the correct diffusion equation. Most CMs in the latter set behave poorly in general, sometimes producing oscillatory and negative solutions in thick diffusive regions. However, the analysis suggests that certain reduced-order CMs, which use less information on cell surfaces than is readily available, will behave more robustly in thick diffusive regions. The predictions regarding standard CMs are tested by using the linear and bilinear characteristics methods on several test problems with rectangular grids in x-y geometry. The predictions regarding reduced-order CMs are tested by solving x-y test problems on triangular grids using a CM that employs linear functions for cell-interior sources but constants for cell-surface fluxes. In every case the numerical results agree precisely with the predictions of the theory.