ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
Yoshiaki Oka, Shigehiro An, Shigeru Kasai, Shun-ichi Miyasaka, Kinji Koyama
Nuclear Science and Engineering | Volume 73 | Number 3 | March 1980 | Pages 259-273
Technical Paper | doi.org/10.13182/NSE80-A19850
Articles are hosted by Taylor and Francis Online.
Measurements of neutron and gamma-ray penetrations in an iron shield were performed up to a 60-cm depth in a tightly coupled source shield configuration with the fast-neutron reactor YAYOI as a source. Rates of neutron reactions and gamma-ray dose rates in the iron shield were obtained using activation foils and thermoluminescent dosimeters. Analyses of the experiments were made by using the DOT-III code with coupled neutron and gamma-ray cross sections from ENDF/B-IV and POPOP4 libraries. To obtain the source condition for the iron shield analyses, the calculated spectrum was adjusted to the measured reaction rates at the reactor shield boundary. The calculated neutron and gamma-ray distributions in the iron shield show fairly good agreement with the experiments. The effect of difference in Bondarenko-type self-shielding factors on the analyses of the iron shield is also shown.