ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
General Matter to build Kentucky enrichment plant under DOE lease
The Department of Energy’s Office of Environmental Management announced it has signed a lease with General Matter for the reuse of a 100-acre parcel of federal land at the former Paducah Gaseous Diffusion Plant in Kentucky for a new private-sector domestic uranium enrichment facility.
J. M. Ryskamp, D. R. Harris, M. Becker
Nuclear Science and Engineering | Volume 77 | Number 3 | March 1981 | Pages 285-296
Technical Paper | doi.org/10.13182/NSE81-A19839
Articles are hosted by Taylor and Francis Online.
The sensitivity of light water reactor (LWR) fuel cycle parameters and costs to uncertainties in thermal nuclear data and methods is examined using a code package developed at Rensselaer Polytechnic Institute. Cross sections averaged over the thermal energy (<1- or 2-eV) group are shown to have an important economic role for LWRs. When it has been determined that fuel cycle parameters and costs are sensitive to a specific thermal group cross section, it becomes desirable to determine how specific energy-dependent cross sections influence fuel cycle parameters and costs. The FASTT code was written to compute detailed sensitivity coefficients using either a direct or a perturbation technique. Multigroup cross-section sensitivity coefficients vary with fuel exposure. After computing the changed exposure-dependent thermal group cross section, new fuel cycle parameters and costs are computed by a sequence of fuel depletion, core analysis, and cost codes. One can therefore obtain the change in fuel cycle cost for different fuel cycle options induced by a change in the shape of a detailed thermal cross section. A striking feature of our thermal analyses is the (usually) overwhelming importance of the hardened Maxwellian energy region (0.01 to 0.1 eV). The FASTT code is also used to determine the importance of the frequency distribution used to compute neutron scattering kernels based on the incoherent approximation. The sensitivities to Nelkin's scattering data are not large. A method, having potentially large implications for LWR design, is developed for obtaining correspondence among different scattering kernels.