ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
T. M. John, C. P. Reddy, Om Pal Singh
Nuclear Science and Engineering | Volume 80 | Number 3 | March 1982 | Pages 370-378
Technical Paper | doi.org/10.13182/NSE82-A19821
Articles are hosted by Taylor and Francis Online.
In this paper, an attempt has been made to investigate the noise transmission characteristics of nonmultiplying media of liquid-metal fast breeder reactors (LMFBRs) and study its implications on the detection of malfunctions in LMFBR cores by using out-of-core detectors and noise analysis methods. Neutron wave propagation technique has been used to study the problem by employing different approximations such as infinite and finite medium, one- and two-group diffusion theory, and multiregion and multigroup diffusion theory approximations. It has been found that reactor core noise will be transmitted to the out-of-core detectors with equal attenuation for all frequencies, ω < (ωΣt)min where υ is the speed of neutrons and Σt is the total macroscopic removal cross section of the medium. For normal in-reactor vessel nonmultiplying media, (υΣt)min is of the order of 1 kHz. However, for materials like graphite if used as a moderator surrounding the out-of-core detectors, the limit (υΣt)min can be as low as 10 Hz. Reactor noise of malfunctions due to thermal events inside the reactor core such as sodium boiling lies in the frequency range of 2 to 15 Hz for integral boiling and goes up to 1 kHz for local boiling. Noise due to mechanical events is also a high frequency phenomenon. Therefore for detecting the malfunctions due to thermal and mechanical events in LMFBR cores by out-of-core detectors and noise analysis methods, one has to keep in mind that for moderating materials like graphite used in the surroundings of detectors, a band limited noise in reactor may be transmitted to detector locations in a distorted way and since high frequency noise is likely to be attenuated more, it will pose a problem in detecting the malfunction in its incipient stage.