ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
Man Gyun Na, Belle R. Upadhyaya, Jung In Choi
Nuclear Science and Engineering | Volume 129 | Number 3 | July 1998 | Pages 283-293
Technical Paper | doi.org/10.13182/NSE98-A1982
Articles are hosted by Taylor and Francis Online.
A multivariable adaptive control algorithm is applied to the axial flux shape control in a pressurized water reactor. This is one of the most challenging control problems in the nuclear field. The reactor model used for computer simulations is a two-point xenon oscillation model based on the nonlinear xenon and iodine balance equations and a one-group, one-dimensional, neutron diffusion equation having nonlinear power reactivity feedback that adequately describes axial oscillations and treats the nonlinearities explicitly. The reactor core is axially divided into two regions, and it is considered that each region has one input and one output and is coupled with the other region. The control parameters are updated on-line with the generalized least-squares method to adjust the varying operating conditions. Therefore, this algorithm is able to treat the varying operating conditions well. Also, this control algorithm exhibits very fast responses due to the step and ramp changes of target axial shape without any residual flux oscillations between the upper and lower halves of the reactor core.