ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
J. P. Lestone, A. Gavron
Nuclear Science and Engineering | Volume 116 | Number 3 | March 1994 | Pages 213-217
Technical Paper | doi.org/10.13182/NSE94-A19814
Articles are hosted by Taylor and Francis Online.
A statistical model is used with parameters obtained by fitting 232U(n,f) through 236U(n,f) and 238U(n,f) cross-section data to determine the 237U(n,f) fission cross section in the neutron energy range of 0.5 to 20 MeV. Below an incoming neutron energy of 0.5 MeV, the cross section is extrapolated using the neutron energy dependence of the 235U(n,f) reaction. The calculated values to experimental 237U(n,f) cross-section data are compared, and some adjustments are made to the calculated values to obtain a better fit to the existing data.