ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
D. F. Hollenbach, L. M. Petri, H. L. Dodds
Nuclear Science and Engineering | Volume 116 | Number 3 | March 1994 | Pages 147-164
Technical Paper | doi.org/10.13182/NSE94-A19810
Articles are hosted by Taylor and Francis Online.
The object of this research project is to develop a vectorized version of the KENO-V.a criticality safety code, benchmark it against the original version of the code, and determine its speedup factor for various classes of problems. The current generation of supercomputers is equipped with vector processors that allow the same operation to be simultaneously performed on a string of data. Unfortunately, the Monte Carlo algorithm used in KENO-V.a, which tracks particles individually, cannot utilize these vector processors. A new Monte Carlo algorithm that would efficiently utilize the vector processors currently used in computers is needed. The algorithm developed for the vectorized version of KENO-V.a is an event-based, stack-driven, all-zone, implicit-stack Monte Carlo algorithm. This algorithm divides the particles into one of four main stacks: free flight, inward crossing, outward crossing, or collision. A fifth stack, kill, contains all particles that have either leaked from the system or have been terminated by Russian roulette. The main stack, containing the largest number of particles, is the next stack processed. All the particles in the longest stack are processed simultaneously. The generation is complete when the four main stacks are empty. Only the particle number is transferred between stacks; the particle data remain in permanent vector locations and are updated as the particles traverse through the system. This approach minimizes data transfer between stacks and optimizes the vector length, thus maximizing the speedup. For the 25 benchmark problems, speedup factors ranging from 1.8 to 5.7 relative to the optimized scalar version of KENO-V.a were obtained. Problem geometry, material composition, and the number of histories per generation—all have significant effects on the speedup factor of a problem.