ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
D. F. Hollenbach, L. M. Petri, H. L. Dodds
Nuclear Science and Engineering | Volume 116 | Number 3 | March 1994 | Pages 147-164
Technical Paper | doi.org/10.13182/NSE94-A19810
Articles are hosted by Taylor and Francis Online.
The object of this research project is to develop a vectorized version of the KENO-V.a criticality safety code, benchmark it against the original version of the code, and determine its speedup factor for various classes of problems. The current generation of supercomputers is equipped with vector processors that allow the same operation to be simultaneously performed on a string of data. Unfortunately, the Monte Carlo algorithm used in KENO-V.a, which tracks particles individually, cannot utilize these vector processors. A new Monte Carlo algorithm that would efficiently utilize the vector processors currently used in computers is needed. The algorithm developed for the vectorized version of KENO-V.a is an event-based, stack-driven, all-zone, implicit-stack Monte Carlo algorithm. This algorithm divides the particles into one of four main stacks: free flight, inward crossing, outward crossing, or collision. A fifth stack, kill, contains all particles that have either leaked from the system or have been terminated by Russian roulette. The main stack, containing the largest number of particles, is the next stack processed. All the particles in the longest stack are processed simultaneously. The generation is complete when the four main stacks are empty. Only the particle number is transferred between stacks; the particle data remain in permanent vector locations and are updated as the particles traverse through the system. This approach minimizes data transfer between stacks and optimizes the vector length, thus maximizing the speedup. For the 25 benchmark problems, speedup factors ranging from 1.8 to 5.7 relative to the optimized scalar version of KENO-V.a were obtained. Problem geometry, material composition, and the number of histories per generation—all have significant effects on the speedup factor of a problem.