ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
H. van Dam
Nuclear Science and Engineering | Volume 129 | Number 3 | July 1998 | Pages 273-282
Technical Paper | doi.org/10.13182/NSE98-A1981
Articles are hosted by Taylor and Francis Online.
An analysis is presented of reactor dynamics during inherent shutdown and recriticality after loss of cooling without scram. The influence of the strength of external neutron sources is studied, and the dynamics of fission product decay heat is explicitly taken into account. It is shown that decay heat and (in thermal reactors) xenon dynamics play a dominant role in inherent reactor shutdown. Fission power level at first spontaneous recriticality is determined by both the strength of the external/inherent neutron sources and the reactivity ramp rate induced by xenon decay and cooling down of the subcritical reactor core. The first power surge after recriticality is only very weakly dependent on the external/inherent neutron source strength, and the amplitude of fission power oscillations is mainly determined by the reactivity ramp rate at first recriticality. Frequency and stability of the power oscillations after recriticality depend on the thermal inertia of the core and the power-reactivity defect. Stability is slightly deteriorated by the fission product decay dynamics, but the influence of xenon dynamics is negligible.