ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Yousef M. Farawila
Nuclear Science and Engineering | Volume 129 | Number 3 | July 1998 | Pages 261-272
Technical Paper | doi.org/10.13182/NSE98-A1980
Articles are hosted by Taylor and Francis Online.
A modal neutron kinetics method was developed and applied to new problems with boiling water reactor oscillations. The modal method is uniquely suited for such problems because the oscillation components, in-phase and out-of-phase, correspond directly to separate expansion functions. One problem is understanding the origin and predicting the magnitude of the in-phase component that is always present during out-of-phase power oscillations. Another exercise of the method was the calculation of the relative critical power ratio (CPR) response to in-phase and out-of-phase oscillations, known as the DIVOM curve, using a fast single hydraulic channel model. The new calculations confirm the BWR owners group results and similar calculations using the full three-dimensional neutronics and multichannel models of the RAMONA-3 code. In addition, the origin of the large difference between the in-phase and out-of-phase CPR responses could be explained. Modal analysis of the reactivity biases associated with oscillating reactivity insertions for the two known modes could explain the out-of-phase mode higher propensity to growth compared with the in-phase mode of oscillation.