ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
What’s in your Dubai chocolate? Nuclear scientists test pistachios for toxins
For the uninitiated, Dubai chocolate is a candy bar filled with pistachio and tahini cream and crispy pastry recently popularized by social media influencers. While it’s easy to dismiss as a viral craze now past its peak, the nutty green confection has spiked global pistachio demand, and growers and processors are ramping up production. That means more pistachios need to be tested for aflatoxins—a byproduct of a common crop mold.
G. F. Carpenter, N. R. Knopf, E. S. Byron
Nuclear Science and Engineering | Volume 19 | Number 1 | May 1964 | Pages 18-38
Technical Paper | doi.org/10.13182/NSE64-A19786
Articles are hosted by Taylor and Francis Online.
The effects of neutron irradiation, post-irradiation annealing and re-irradiation on the Charpy V-notch impact transition temperature of pressure-vessel steels were investigated. Specimens representing several heats of pressure-vessel steels were irradiated at elevated temperatures to fast (> 1 MeV) neutron exposures up to 2 × 1020 nvt. The general observation was that irradiation caused an increase in the transition temperature; however, it was discovered that specimens representing various heats of a given material composition could show a vastly different increase in transition temperature due to irradiation. These results have led to the arbitrary classification of these steels as “sensitive” or “insensitive” heats. Possible correlation of heat to heat sensitivity with microstructure is discussed. Post-irradiation annealing in the temperature range of 650–800 F was found to reduce the effects of irradiation on the transition temperature significantly. However, subsequent re-irradiation of specimens that were post-irradiation annealed at 650 F increased the transition temperature to a level that could not be distinguished from that of specimens that were not annealed prior to re-irradiation. Re-irradiation studies were not conducted on specimens that were post-irradiation annealed at the higher temperatures. No explanation of the re-irradiation behavior after annealing is available.