ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
A new ANSI/ANS standard for liquid metal fire protection published
ANSI/ANS-54.8-2025, Liquid Metal Fire Protection in LMR Plants, received approval from the American National Standards Institute on September 2 and is now available for purchase.
The 2025 edition is a reinvigoration of the withdrawn ANS-54.8-1988 of the same title. The Advanced Reactor Codes and Standards Collaborative (ARCSC) identified the need for a current version of the standard via an industry survey.
Typical liquid metal reactor designs use liquid sodium as the coolant for both the primary and intermediate heat-transport systems. In addition, liquid sodium and NaK (a mixture of sodium and potassium that is liquid at room temperature) are often used in auxiliary heat-removal systems. Since these liquid metals can react readily with oxygen, water, and other compounds, special precautions must be taken in the design, construction, testing, and maintenance of the sodium/NaK systems to ensure that the potential for leakage is very small.
J. E. Bodine, I. J. Groce, J. Guon, L. A. Hanson
Nuclear Science and Engineering | Volume 19 | Number 1 | May 1964 | Pages 1-7
Technical Paper | doi.org/10.13182/NSE64-A19784
Articles are hosted by Taylor and Francis Online.
The oxidative decladding of UO2 fuels has been demonstrated on three-foot sections of unirradiated fuel rods and on eight-inch sections of fuel rods irradiated to 21,000 MWd/MTU. Decladding rates were unaffected by the extent of irradiation. Uranium dioxide which was unirradiated, irradiated, and with fissia added to simulate 100,000 MWd/MTU irradiation was declad at similar rates. The effect of pressure and temperature on decladding rates was determined. Puncturing the cladding greatly enhanced the rate and gave a coarser product. This product was not completely converted to U3O8 during oxidative decladding. Greater than 99.9% of the UO2 fuel was removed from the cladding. There was no detectable contamination of the product by the cladding material. Little or no fission-product or plutonium decontamination was observed. Dissolution rates for the declad product, in 50% nitric acid, were 20 times as fast as for the “as received” UO2 fuel.