ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
O. F. Smidts, J. Devooght
Nuclear Science and Engineering | Volume 129 | Number 3 | July 1998 | Pages 224-245
Technical Paper | doi.org/10.13182/NSE98-A1978
Articles are hosted by Taylor and Francis Online.
A biased Monte Carlo methodology is presented for solving the transport of radionuclide chains through a porous medium in the context of the risk assessment of radioactive waste repositories. It is based on the construction of random walks from an integral equation. This leads to a biased Monte Carlo simulation because it uses the solution of an adjoint reference problem to improve the efficiency of the calculations. The transport of a radionuclide chain is modeled by introducing the notion of a radionuclide "state." The consequence is that only one integral equation has to be considered for the simulation in a continuous - discrete space (r,t;i), where r is the radionuclide position vector, t is time, and i is the radionuclide state. Transport in a random velocity field is also considered by using double randomization techniques.The methodology is illustrated by numerical results on test problems; the score of the simulations being the quantity of radionuclides transferred, during the mission time, to the upper surface of the geological domain. Validations of the simulations are first realized by comparison with analytical solutions, and the influence of biasing techniques is put in evidence. Finally, simulations conducted simultaneously with the generation of a large number of random velocity fields illustrate the feasibility of the method for the transport of radionuclides in a stochastic medium.