ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
Z. Weiss
Nuclear Science and Engineering | Volume 22 | Number 1 | May 1965 | Pages 60-77
Technical Paper | doi.org/10.13182/NSE65-A19763
Articles are hosted by Taylor and Francis Online.
Making use of the isotropic incident flux approximation, the disadvantage factor ζ for a two-region unit cell can be written as a linear combination of two so-called X functions, each of them depending on the properties of one region only. A general variational approach, based on Ritz-Galerkin's method, is used to find a closed expression for X in terms of the ‘weighted’ collision probabilities, From this expression the properties of X will be deduced once more, but then in a general way. An analytical calculation of X in slab geometry and a numerical one in cylindrical geometry are given. The results of the first have been used for a comparison with Theys' generalization of the Amouyal-Benoist-Horowitz theory; the results of the second example were compared with Leslie's calculation of the same X function by means of successive collision probabilities. It is furthermore shown that the same procedure that serves to calculate X functions gives, as an important by-product, the constant production and the isotropic abledo solutions of Peierl's integral transport theory. From these solutions the flux distribution in the unit cell (of arbitrary geometry) can be constructed. Sauer's simple recipe for calculating the X function is discussed and is shown to be inaccurate for weakly absorbing media.