ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Work advances on X-energy’s TRISO fuel fabrication facility
Small modular reactor developer X-energy, together with its fuel-developing subsidiary TRISO-X, has selected Clark Construction Group to finish the building construction phase of its advanced nuclear fuel fabrication facility, known as TX-1, in Oak Ridge, Tenn. It will be the first of two Oak Ridge facilities built to manufacture the company’s TRISO fuel for use in its Xe-100 SMR. The initial deployment of the Xe-100 will be at Dow Chemical Company’s UCC Seadrift Operations manufacturing site on Texas’s Gulf Coast.
Z. Weiss
Nuclear Science and Engineering | Volume 22 | Number 1 | May 1965 | Pages 60-77
Technical Paper | doi.org/10.13182/NSE65-A19763
Articles are hosted by Taylor and Francis Online.
Making use of the isotropic incident flux approximation, the disadvantage factor ζ for a two-region unit cell can be written as a linear combination of two so-called X functions, each of them depending on the properties of one region only. A general variational approach, based on Ritz-Galerkin's method, is used to find a closed expression for X in terms of the ‘weighted’ collision probabilities, From this expression the properties of X will be deduced once more, but then in a general way. An analytical calculation of X in slab geometry and a numerical one in cylindrical geometry are given. The results of the first have been used for a comparison with Theys' generalization of the Amouyal-Benoist-Horowitz theory; the results of the second example were compared with Leslie's calculation of the same X function by means of successive collision probabilities. It is furthermore shown that the same procedure that serves to calculate X functions gives, as an important by-product, the constant production and the isotropic abledo solutions of Peierl's integral transport theory. From these solutions the flux distribution in the unit cell (of arbitrary geometry) can be constructed. Sauer's simple recipe for calculating the X function is discussed and is shown to be inaccurate for weakly absorbing media.