ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
A. J. Buslik
Nuclear Science and Engineering | Volume 32 | Number 2 | May 1968 | Pages 233-240
Technical Paper | doi.org/10.13182/NSE68-A19735
Articles are hosted by Taylor and Francis Online.
Few-group diffusion equations are derived from variational principles. It is shown that by proper choice of trial function it is possible to derive a few-group theory in which interface boundary conditions of continuity of few-group fluxes and currents are obtained, even when the few-group constants are obtained by flux-adjoint weighting. The analysis is facilitated by the use of functionals that incorporate the interface condition of flux continuity by means of Lagrange multipliers. Two functionals are used to give two variants of the theory. Both functionals have as Euler equations the P-1 approximation to the time-independent, eigenvalue form of the energy-dependent transport equation. In addition, the current and flux interface boundary conditions are part of the complement of Euler conditions of the functionals. The functionals admit trial functions discontinuous in space and energy. The two functionals differ in that one has both flux and current arguments, whereas the other has only flux arguments, and yields the P-1 equations in second-order diffusion form.