ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
P. Wälti
Nuclear Science and Engineering | Volume 36 | Number 2 | May 1969 | Pages 133-142
Technical Paper | doi.org/10.13182/NSE69-A19713
Articles are hosted by Taylor and Francis Online.
The mathematical model of age-dependent branching processes is used to describe neutron slowing down and multiplication in an infinite medium. To construct the probability measure of the neutron branching process, it is necessary to determine the probability density for a neutron of age θ(=time elapsed since birth of the fission neutron) to have energy E. This problem, which is equivalent to the time-dependent slowing down problem, is solved for a scattering law of the form v(E)Σs(E → E′)dE′ = aEµh(E′/E) (dE′/E) and an absorption cross section satisfying the relation v(E) Σa(E) = bEµ + c. In this case, it is proved that there always exist particular “invariant” probability densities suffering only contraction during ageing, i.e., having the form . For the time-dependent slowing down problem with a Greuling-Goertzel kernel, the results are compared with those of Koppel. Particular attention is paid to stationary energy spectra.