ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
WIPP’s SSCVS: A breath of fresh air
This spring, the Department of Energy’s Office of Environmental Management announced that it had achieved a major milestone by completing commissioning of the Safety Significant Confinement Ventilation System (SSCVS) facility—a new, state-of-the-art, large-scale ventilation system at the Waste Isolation Pilot Plant, the DOE’s geologic repository for defense-related transuranic (TRU) waste in New Mexico.
O. E. Dwyer, H. C. Berry
Nuclear Science and Engineering | Volume 40 | Number 2 | May 1970 | Pages 317-330
Technical Paper | doi.org/10.13182/NSE70-A19692
Articles are hosted by Taylor and Francis Online.
This paper summarizes the results of an analytical study carried out for the purpose of determining the effects of cladding thickness and conductivity on fully developed heat transfer to liquid metals flowing in-line through unbaffled rod bundles. The study is based on slug flow and the assumption that the heat flux on the inner wall of the cladding is uniform in all directions. It was shown earlier that slug-flow results for liquid metals are very similar to those for turbulent flow in practical Pe ranges, particularly when the results are put in certain dimensionless forms, and it is shown in the present study that the assumption of circumferentially uniform heat flux on the inner wall of the cladding is perfectly valid for any practical nuclear-reactor design for a central-station power plant. The problem required the simultaneous solution of the differential energy equations for both the coolant and cladding, which are coupled by the local temperature and heat-flux conditions existing at the coolant-cladding interface. There are three prime independent variables: rod spacing (P/D), relative cladding thickness (r2 − r1)/r2, and relative cladding conductivity (kw/kf). These have been varied over the ranges 1.05 to 1.30, 0.025 to 0.300, and 0.10 to 4.00, respectively. The following quantities have been calculated as functions of the above independent variables: rod-average heat transfer coefficients, circumferential variation of outer-surface cladding temperature, the same for the inner surface, circumferential variation of local heat flux, and finally, circumferential variation of local heat-transfer coefficient. The results are all expressed in the form of convenient dimensionless groups and are correlated by simple mathematical expressions, for ready use by the design engineer. It is found that, of the three prime independent variables, the P/D ratio has by far the greatest influence on the heat transfer behavior of the system; and that, of the remaining two variables, the thermal conductivity ratio, kw/kf, has appreciably more influence than the relative-cladding-thickness ratio (r2 − r1)/r2. The higher the P/D ratio and the lower the (r2 − r1)/r2 and kw/kf ratios, the more the system behaves like the uniform-wall-heat-flux case; and it is interesting to note that in many practical situations the simple uniform-wall-heat-flux assumption is quite adequate.