ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
V. Deniz
Nuclear Science and Engineering | Volume 40 | Number 2 | May 1970 | Pages 246-253
Technical Paper | doi.org/10.13182/NSE70-A19686
Articles are hosted by Taylor and Francis Online.
Criticality codes are in general adjusted to reproduce measured values of critical bucklings which furnish (k∞ − 1)/M2. The parameter adjusted is k∞, the calculation of leakage being assumed to be well made. However, in the case of heterogeneous systems in particular, the slowing down region is not easy to study, and one has perforce to make certain simplifying assumptions which reflect on the calculated value of the age. Since a proper estimation of leakage is necessary for a code adjusted on clean critical systems to be valid when extrapolated to large power reactors where leakages are different, it is of practical interest to be able to use some experimental data for checking age calculations and searching for improvements if necessary. Pulsed experiments furnish the necessary experimental data, since measurements made on a given lattice for different block sizes permit the separation of multiplication from leakage. A method of analysis is presented and applied to experiments on natural uranium/graphite lattices. An effective age-diffusion expression in which k∞/p, L2 and the mean lifetime lo are evaluated in terms of buckling-dependent spectra, is transformed into a linear equation which permits simultaneous adjustment of p and of the age. Our analysis shows that pulsed experiments can be sufficiently precise for age adjustments. However, since these experiments are performed at far-from-critical bucklings, the precision is not sufficient for adjusting p, and hence k∞. We conclude that these experiments are very useful for adjusting leakage, but this adjustment being made, critical experiments remain necessary for the subsequent adjustment of k∞ with precision.