ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
C. R. Adkins, M. W. Dyos
Nuclear Science and Engineering | Volume 40 | Number 2 | May 1970 | Pages 159-172
Technical Paper | doi.org/10.13182/NSE70-A19680
Articles are hosted by Taylor and Francis Online.
A random sampling procedure is used to construct resonances in the unresolved region. The success of this procedure depends on the ability to determine statistically meaningful reactivity coefficients. To establish an estimate of the statistical dispersion of the Doppler effect for a carbide-fueled fast power reactor, many different resonance ladders were studied for each total angular momentum state of the compound nucleus for each isotope. It is shown that the one-standard-deviation statistical uncertainty in the calculated total Doppler effect for the core is ∼3%, which is quite satisfactory. However, the statistical uncertainty in the 239Pu Doppler effect was determined to be ∼40% in the unresolved region, and ∼35% over all energy. The manner in which the ladders are chosen is investigated, with the conclusion that any ladder, giving the proper distributions of resonance parameters, may be used. Based on these results, it may be advantageous to use the random sampling method of resonance construction in place of the usual statistical averaging procedure. This would eliminate some of the approximations inherent to these statistical averaging procedures, by including all interference and overlap effects.