ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC’s David Wright visits the Hill and more NRC news
Wright
The Nuclear Regulatory Commission is in the spotlight today for three very different reasons. First, NRC Chair David Wright was on Capitol Hill yesterday for his renomination hearing in front of the Senate’s Environment and Public Works Committee. Second, the NRC released its updated milestone schedules according to the Nuclear Energy Innovation and Modernization Act (NEIMA) and the executive orders signed by President Trump last month; and third, as reported by Reuters on Tuesday, 28 former NRC officials have condemned the dismissal of Commissioner Hanson earlier this month.
Renomination: EPW Committee chair Sen. Shelley Moore Capito (R., W.Va.) opened the hearing with a statement praising Wright’s experience and emphasized the urgency of stable leadership at the NRC.
“China is executing a rapid build-out of its nuclear industry,” Capito said. “The demand for clean, baseload power is skyrocketing as we position America to win the AI race.”
Paul M. Keller, John C. Lee
Nuclear Science and Engineering | Volume 129 | Number 2 | June 1998 | Pages 124-148
Technical Paper | doi.org/10.13182/NSE98-A1968
Articles are hosted by Taylor and Francis Online.
A time-dependent collision probability method has been developed for the solution of neutron transport and nuclear reactor kinetics problems in one-dimensional slab geometry. The time-dependent collision probabilities permit the solution of time-dependent neutron transport problems involving general source distributions over an indefinite time period and an infinite number of collision generations. The method is based on the analytic integration of the time-dependent integral transport kernel involving purely real cross sections. The neutron time-of-flight and causality considerations lead to a number of complex formulas involving exponential and exponential integral functions. Occasional conflicts between the regular grid in time and space and the causality considerations lead to some formulas that are inexact. It is shown that these inexact formulas are terms of the third order in the time-step length, and thus the method has overall second-order accuracy in time. The method has been used to solve two types of neutron transport problems. The first, a pulsed, planar, fixed-source problem, yielded a flux solution with a root-mean-square relative difference of 0.94% from a benchmark analytic solution. The second problem solved was a pair of multigroup nuclear reactor kinetics problems. While the kinetics results were not conclusive, they suggest that diffusion theory may yield results that underestimate the amplitude and deposited energy of certain reactor transients.