ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
Jianqing Ye, Paul J. Turinsky
Nuclear Science and Engineering | Volume 129 | Number 2 | June 1998 | Pages 97-123
Technical Paper | doi.org/10.13182/NSE98-A1967
Articles are hosted by Taylor and Francis Online.
The computational capability of automatically determining the optimal control strategies for pressurized water reactor core maneuvering, in terms of an operating strategy generator (OSG), has been developed. The OSG was developed for use with an on-line, three-dimensional core simulator and applies optimal control theory. To reduce computer run time, the optimization engine employs a one-dimensional axial core model. A method has been developed for generating a consistent one-dimensional axial core model from the three-dimensional on-line core simulator based on the consistent collapse methodology. From the one-dimensional, model-based, optimal control strategy, the associated axial offset versus time is obtained. These axial offsets are subsequently used in the three-dimensional simulator to determine with enhanced accuracy the associated control rod insertions and boration/dilution operations versus time.Various operational objectives are defined as the performance index to be minimized. The axial flux difference limit constraint and the maximum boration/dilution limit constraint are treated as penalty functions added to the performance index. The control rod insertion/withdraw limit constraint is treated as a hard constraint on the control variable. The optimality condition is obtained by applying Pontryagin's maximum principle for constrained optimization. The resulting nonlinear, two-point boundary-value problem is solved via an iterative approach based on the first-order gradient method.Several sample OSG maneuvering problems have been studied to assess the robustness and efficiency of the optimization search and nonlinear iterations. The algorithm exhibited excellent control of the axial power distribution during maneuvering. For the cases of minimizing the boron system duty during maneuvering, the optimal strategies produced reduced volumes of primary water generated by dilution and boration operations of 12% for beginning-of-cycle cases and 10% for end-of-cycle cases over the volumes generated using heuristic rules.