ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
DOE extends Centrus’s HALEU production contract by one year
Centrus Energy has announced that it has secured a contract extension from the Department of Energy to continue—for one year—its ongoing high-assay low-enriched uranium (HALEU) production at the American Centrifuge Plant in Piketon, Ohio, at an annual rate of 900 kilograms of HALEU UF6. According to Centrus, the extension is valued at about $110 million through June 30, 2026.
William T. Sha, Alan E. Waltar
Nuclear Science and Engineering | Volume 44 | Number 2 | May 1971 | Pages 135-156
Technical Paper | doi.org/10.13182/NSE71-A19663
Articles are hosted by Taylor and Francis Online.
A two-dimensional (R - Z) integral model for characterizing fast reactor excursions from accident inception through core disassembly is presented. For predisassembly calculations, a Eulerian geometric model is used and multichannel heat-transfer computations are performed. Reactivity feedback due to Doppler broadening, coolant density change and voiding, and fuel movement are taken into account. A Lagrangian coordinate system is used in the disassembly phase, wherein the neutronics balance consists of Doppler broadening and material motion. A unique feature of the model is the ability to accommodate a pointwise Energy-Density-Dependent Equation-of-State according to the local sodium inventory that actually exists at the time of disassembly. By providing a consistent basis for establishing the effective reactivity ramp rate, Doppler coefficient, appropriate Equation-of-State, and temperature distribution at the start of core disassembly, much of the arbitrariness normally associated with large accident analyses can be removed. For most accident analyses, this model predicts a significantly lower energy yield during a superprompt critical nuclear excursion than would be computed by using the conventional modified Bethe-Tait analysis.