ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
Atsuyuki Suzuki, Ryohei Kiyose
Nuclear Science and Engineering | Volume 44 | Number 2 | May 1971 | Pages 121-134
Technical Paper | doi.org/10.13182/NSE71-A19662
Articles are hosted by Taylor and Francis Online.
The problem of optimal control rod withdrawal sequence is formulated for a multizone core model of a nuclear reactor. In particular, the maximum average burnup problem for light-water reactors is investigated to find the governing principles in optimal control rod programming. The optimal solution depends only on end-of-life (EOL) states, and in the optimal state, the control poisons are all withdrawn from the entire core and the power distribution will be as uneven as possible within the constraints on the power peaking factor. We define the core composition, including the control poison, which represents the nuclear performance of each zone and it is taken as an independent control vector. The admissible control is defined such that the control vector satisfies the criticality condition and the constraints of power peaking factor. Some complexities of the other constraints to be considered are resolved by determining the reachable region of the burnup of each zone which is chosen as a state vector. The method described in this study is based on a topological mapping theory, and for illustrative purposes, the results in the case of a two-zone model are shown by using the method.