ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
M. A. Lopez de Bertodano, A. Assad, Stephen Beus
Nuclear Science and Engineering | Volume 129 | Number 1 | May 1998 | Pages 72-80
Technical Paper | doi.org/10.13182/NSE98-A1964
Articles are hosted by Taylor and Francis Online.
Two-fluid model predictions of film dryout in annular flow are limited by the uncertainties in the constitutive relations for the entrainment rate of droplets from the liquid film. The main cause of these uncertainties is the lack of separate-effects experimental data in the range of the operating conditions in nuclear power reactors.Air/water and Freon-113 entrainment rate data have been obtained in 10-mm tubes using the film extraction technique. These experiments have been scaled to approach high-pressure steam/water flow conditions. The effects of surface tension and density ratio, missing from most previous data sets, have been systematically tested.The entrainment rate mechanism is assumed to be a Kelvin-Helmholtz instability. Based on this analysis and two previous correlations, a new correlation is proposed that is valid for low-viscosity fluids in small ducts in the ripple-annular regime.