ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Acceleron Fusion raises $24M in seed funding to advance low-temp fusion
Cambridge, Mass.–based fusion startup Acceleron Fusion announced that it has closed a $24 million Series A funding round co-led by Lowercarbon Capital and Collaborative Fund. According to Acceleron, the funding will fuel the company’s efforts to advance its low-temperature muon-catalyzed fusion technology.
Jeffrey A. Favorite
Nuclear Science and Engineering | Volume 175 | Number 1 | September 2013 | Pages 44-69
Technical Paper | doi.org/10.13182/NSE12-17
Articles are hosted by Taylor and Francis Online.
It is often desirable to solve radiation transport problems in one-dimensional spherical geometries even if the actual object being modeled is not spherical. It may be possible to use perturbation theory to account for the difference between the real multidimensional system and the spherical approximation. This idea is tested using uncollided as well as multigroup inhomogeneous transport problems with upscattering. Asymmetric and nonuniform perturbations are made to the shielding (not the source) of spherical geometries, including transformations from a sphere to a cube (the surface transformation function is derived), and Schwinger, Roussopolos, and combined perturbation estimates are applied. For uncollided fluxes, perturbation theory, particularly the Schwinger estimate, worked very well when the response of interest was the flux measured at a symmetric spherical 4 detector external to the geometry, but perturbation theory did not work well when the response of interest was the flux measured at a single external point (unless extra care was taken to account for geometric effects). For neutron-induced gamma-ray line fluxes, the Roussopolos estimate worked well when the response of interest was the flux measured at an external 4 detector or an external point detector.