ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Jeffrey A. Favorite
Nuclear Science and Engineering | Volume 175 | Number 1 | September 2013 | Pages 44-69
Technical Paper | doi.org/10.13182/NSE12-17
Articles are hosted by Taylor and Francis Online.
It is often desirable to solve radiation transport problems in one-dimensional spherical geometries even if the actual object being modeled is not spherical. It may be possible to use perturbation theory to account for the difference between the real multidimensional system and the spherical approximation. This idea is tested using uncollided as well as multigroup inhomogeneous transport problems with upscattering. Asymmetric and nonuniform perturbations are made to the shielding (not the source) of spherical geometries, including transformations from a sphere to a cube (the surface transformation function is derived), and Schwinger, Roussopolos, and combined perturbation estimates are applied. For uncollided fluxes, perturbation theory, particularly the Schwinger estimate, worked very well when the response of interest was the flux measured at a symmetric spherical 4 detector external to the geometry, but perturbation theory did not work well when the response of interest was the flux measured at a single external point (unless extra care was taken to account for geometric effects). For neutron-induced gamma-ray line fluxes, the Roussopolos estimate worked well when the response of interest was the flux measured at an external 4 detector or an external point detector.