ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Uranium prices reach highest level since February 2024
The end-of-January spot price for uranium was $94.28 per pound, according to uranium fuel provider Cameco. That was the highest spot price posted by the company since the $95.00 per pound it listed at the end of February 2024. Spot prices during 2025 ranged from a low of $64.23 per pound at the end of March to a high of $82.63 per pound at the end of September.
M. Drosg, P. W. Lisowski
Nuclear Science and Engineering | Volume 175 | Number 1 | September 2013 | Pages 19-27
Technical Paper | doi.org/10.13182/NSE12-7
Articles are hosted by Taylor and Francis Online.
Reliable nonelastic cross-section measurements of fast neutrons with 3He are sparse. In the energy range up to 40 MeV, the data are dominated by unpublished nonelastic n-3He values derived from measurements made in 1982. As mentioned elsewhere, n-3He elastic cross-section data reported in the same report had not been corrected for the outgoing neutron attenuation even though the sample size was >7 mol. To check the database of existing nonelastic n-3He cross-section data, and in particular those from 1982, a detailed balance calculation of time-reversed charged-particle data was performed. Because there are few existing independent data, we provide an updated detailed balance analysis in the energy range up to 31 MeV for both 3He(n,p)3H and 3He(n,d)2H, supplying accurate absolute-angle-dependent differential cross sections. Subtracting the integrals of these and the elastic cross sections from the total provides a prediction for the sum of the 3He(n,2n)2p and 3He(n,n + p)2H cross sections. The relevant experimental data are compared with their time-reversed counterparts.