ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Nuclear and Emerging Technologies for Space (NETS 2023)
May 7–11, 2023
Idaho Falls, ID|Snake River Event Center
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2023
Jan 2023
Latest Journal Issues
Nuclear Science and Engineering
May 2023
Nuclear Technology
April 2023
Fusion Science and Technology
February 2023
Latest News
NRC to start review of NuScale uprated SMR design
The Nuclear Regulatory Commission recently announced that it will begin reviewing most of the standard design approval (SDA) application for NuScale Power’s uprated small modular reactor technology, with the remainder of the review on hold until the company provides additional details on a key safety topic.
Y. Richet, G. Caplin, J. Crevel, D. Ginsbourger, V. Picheny
Nuclear Science and Engineering | Volume 175 | Number 1 | September 2013 | Pages 1-18
Technical Paper | doi.org/10.13182/NSE11-116
Articles are hosted by Taylor and Francis Online.
Nuclear criticality safety assessment often requires groupwise Monte Carlo simulations of k-effective in order to check subcriticality of the system of interest. A typical task to be performed by safety assessors is hence to find the worst combination of input parameters of the criticality Monte Carlo code (i.e., leading to maximum reactivity) over the whole operating range. Then, checking subcriticality can be done by solving a maximization problem where the input-output map defined by the Monte Carlo code expectation (or an upper quantile) stands for the objective function or “parametric” model. This straightforward view of criticality parametric calculations complies with recent works in Design of Computer Experiments, an active research field in applied statistics. This framework provides a robust support to enhance and consolidate good practices in criticality safety assessment. Indeed, supplementing the standard “expert-driven” assessment by a suitable optimization algorithm may be helpful to increase the reliability of the whole process and the robustness of its conclusions. Such a new safety practice is intended to rely on both well-suited mathematical tools (compliant optimization algorithms) and computing infrastructure (a flexible grid-computing environment).